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Inelastic torsional behaviour of aSymmetric
buildings under severe earthquake shaking

A M. CHANDLER and X.N. DUAN

Department of Civil and Municipal Engineering, University College London, Gower Street, London
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A comprehensive review is made of research studies on inelastic torsional coupling effects in
asymmetric buildings subjected to severe earthquake ground motions. The aim has been to
clarify the influence and relative importance of the key structural geometric and material
parameters on dynamic inelastic torsional effects. These effects are measured in terms of the
peak edge displacement and the peak element ductility demand in simplified asymmetric
building models, which have been analysed parametrically in response to several strong motion
earthquake records. Static loading analyses have also been carried out to investigate key issues
in inelastic torsional response behaviour. Such analyses help explain the model dependency of
the results of dynamic analyses of this problem, which have produced contradictory
conclusions in past studies. Recommendations have been made for further research in order to
gain a better understanding of inelastic torsional coupling, and hence to provide sound
guidelines for the design of asymmetric buildings in active seismic zones.

1. INTRODUCTION

Buildings exhibit coupled torsional and translational
responses to lateral ground motion input if their centres
of floor mass and the centres of resistance do not
coincide. Furthermore, torsional motions may occur
even in nominally symmetric buildings because of two
main reasons: namely, accidental eccentricity and tor-
sional ground motions. The sources giving rise to
accidental eccentricity include the difference between
the assumed and actual distributions of mass and stiff-
ness, asymmetric yielding strength and patterns of non-
linear force~deformation relationships, and differences
in coupling of the structural foundation with the sup-
porting soil or rock. Torsional inputs arise from the wave
propagation effects in horizontal ground motion and the
rotational component of the ground motion about a
vertical axis [1,2]. Therefore, the commonly used sepa-
rate planar model approach [3], in which planar resisting
structures {walls and/or frames) in the two orthogonal
horizontal directions are analysed independently for the
effects of the inplane horizontal component of ground
motion, is very limited in application and may result in
significant errors in some cases, even when the eccentri-
cities of the centres of floor mass with respect to centres
of resistance are small. Because the torsional motion
creates additional internal forces and stresses in certain
earthquake resistant elements of the structure, this
effect must be taken into account by seismic building
codes.

0952-5807/90 $03.00+.12 © 1990 Chapman and Hall Ltd.

Systematic parametric studies have been carried out
on the elastic torsional coupling effects in asymmetric
building structures subject to earthquake ground mo-
tions, using either the idealized response spectrum
approach [4-7] or a time history approach {8-10]. The
results of these studies have been reviewed and the
requirements for further research have been identified
by Chandler in a previous article [1].

Unlike the studies of elastic torsional coupling effects
in asymmetric buildings subjected to earthquake shak-
ing, relatively little attention has been paid to the
inelastic non-linear torsional and translational earth-
quake responses of such buildings. The general aims of
aseismic design are to ensure that structures resist with
slight or no damage a moderate intensity earthquake
and to provide a large measure of resistance to prevent
collapse or failure that might cause major property
damage or loss of life when a severe earthquake occurs.
Thus, in the first case, aseismic structures may be
expected to remain within the elastic range or be excited
slightly into the inelastic range. However, in the second
case, it is unreasonably uneconomic to design structures
to resist such an intensive earthquake elastically. Hence,
aseismic structures may be excited well into the inelastic
range during severe earthquake shaking. Therefore,
conclusions drawn from studies of elastic behaviour of
asymmetric buildings under sarthquake ground excita-
tion may not apply i vielding of resisting elements
occurs. There is an important requirement to investigate
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the inelastic earthquake responses of asymmetric build-
ings by appropriate research to provide a basis for
proposals to assess, and in some cases modify, current
code torsional provisions in order to ensure reasonably
conservative estimates of inelastic torsional effects.

A series of recent parametric studies have been
carried out on the inelastic earthquake response of
torsionally coupled buildings {11-19]. The major studies
in this area differ significantly in terms of the variables
defining the member layout and geometry, and the
dynamic elasto-plastic behaviour of the structural mod-
els employed in the analysis. As a result of these
differences, the various studies have drawn contradic-
tory conclusions regarding the mportance of torsional
coupling in the post-yield earthquake response of asym-
metric structures, and the sensitivity of key response
parameters such as peak member ductility demand to
the definition of the structural layout, dynamic structu-
ral properties and material behaviour. The objectives of
this paper are to review the existing literature in this field
and to clarify the reasons for the observed differences in
the results and the conclusions drawn from dynamic
response analysis. A series of static parametric analyses
have been carried out which identify the key trends in
the element ductility demand and ultimate lateral load
resistance of characteristic structural models exhibiting
torsional response behaviour. On this basis, a need is
identified and proposals made for future research into
the dynamic earthquake response of such structures
based on appropriate understanding of previous work.
In recommending such research, the need to employ
realistic structural models based on simple and practical
earthquake-resistant design procedures is emphasized.

2. SUMMARY OF EXISTING STUDIES

Kan and Chopra [11, 12] carried out the first parametric
studies on the inelastic response of single-storey one-
way eccentric structural models subjected to the 1940 El
Centro earthquake record. The force—deformation rela-
tionship of the resisting elements was assumed to be
elastic-perfectly plastic, and the vielding strength of the
individual resisting elements was taken as proportional
to their elastic stiffness. The multi-element model was
simplified to a single element model (Fig. 1) by defining
a circular yield surface in terms of the shear and torque
acting on the system at and about the centre of
resistance, respectively. The effects of torsional
coupling were characterized by the lateral translation of
the centre of mass, the rotation of the floor about the
vertical axis through it, and the ratio of the total vector
displacement of the corner columns to the displacement
of the centre of mass (Fig. 2). The system parameters of
this simple one-storey model were the eccentricity ratio
e/r, where e is the static eccentricity between the centres
of mass and resistance, and r is the mass radius of
gyration about the centre of mass; the uncoupled
torsional:translational frequency ratio £ = wjw,; the
uncoupled translational period 7,; and the damping
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Fig. 1. One-storey structural model: (a) Idealized one-storey
system; {b) its single-element model [12]. CM, centre of mass;
CR, centre of resistance.
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Fig. 2. Rectangular plan and its displaced configuration [12].
CM, centre of mass; CR, centre of resistance.

ratio. Kan and Chopra concluded that the effects of tor-
sional coupling in the inelastic range depend significantly
onthe uncoupled torsional:transiational frequency ratio,
being most proncunced for systems with this ratio close to
unity {Fig. 3). They found that for systems with an uncou-
pled frequency ratio larger than 2, the effect of torsional
coupling on system and column deformations increases
with increasing eccentricity ratio, but for systems with



Asymmetric buildings under severe earthquake shaking

143

ELASTIC SYSTEMS

INELASTIC SYSTEMS

30
g P 20 [
1R«
3.0
Wy fw,
0.8
) ~ -
20 b~ 1’\/4 / N g T
: N % - '
Uip Mlym e e
;’\:/A»-x 25
; . — 1.5
/ N =
VD . A =
A N
i ) } i
.5
© o i 2 3
Te , 500

Fig. 3. Ratios of corner column deformation u,, to lateral displacement u,,, at CM for systems with a/b = I and e/r = 0.4

subjected to El Centro earthquake [12].

uncoupled frequency ratio smaller than 2, the effects of
torsional coupling are complicated, giving no apparent
systematic trends (Fig. 4). Finally, Kan and Chopra
concluded that after the initial yielding, the system has a
tendency to vield further, primarily in translation, and
behave more and more like an inelastic single-degree-of-
freedom system, responding primarily in translation.

Irvine and Kountouris [13] investigated the inelastic
seismic response of a simple single-storey monosymmet-
ric model having two identical resisting elements parallel
tothe direction of earthquake input. The eccentricity was
caused by the offset of the centre of mass from the centre
of stiffness. They found that the peak ductility demand of
the worse affected element is insensitive to either the
eccentricity ratio or uncoupled frequency ratio.

Syamal and Pekau [14] studied the inelastic response
of a single-storey monosymmetric building model sub-
jected to sinusoidal ground acceleration employing the
Kryloff-Bogoliuboff method. Their single-storey model
consisted of two elements parallel to the direction of the
ground acceleration input and another two elements
perpendicular to it (Fig. 5). The resisting elements were
assumed to be bi-linear hysteretic. The eccentricity was
caused by the unbalanced stiffness of the elements para-
Hiel to the direction of the ground acceleration. The yield
displacements of these two elements were taken to be
equal, and thus the yield strengths were proportional to
their elastic stiffnesses. The system parameters charac-
terizing the properties of the model were: the bi-linear
coefficient of the resisting elements; the eccentricity
ratio; the torsional:lateral frequency ratio of the corres-
ponding torsionally uncoupled system, the amplitude of
ground acceleration and the damping ratio. The
response parameters were the peak ductility demand of
the resisting elements and the response amplitudes of the
translational and torsional displacements of the system.
A parametric study was carried out to investigate the
influences of the system parameters on response para-
meters. They found that, in contrast to the results of

elastic parametric studies, the structure does not exhibit
pronounced inelastic torsional coupling when the uncou-
pled torsional and lateral frequencies are close and the
sccentricity is small {(Fig. 6). Syamal and Pekau also
found that the element peak ductility demand appears to
be most pronounced for torsionally flexible structures,
and the peak ductility demand of the element at the
‘flexible’ edge of the structure grows rapidly with increase
in eccentricity (Fig. 7). For elements at the stiff edge, the
ductility demand decreases only slowly with an increase
in eccentricity ratio. Therefore, seismic building codes
which reduce force requirements for these elements with
increasing eccentricity ratio appear to substantially
underestimate actual behaviour. Finally, Syamal and
Pekau found that, although the uncoupled frequency
ratio does not significantly affect the ductility demand of
the element at the stiff edge, the ductility demand of the
element at the flexible edge is critically affected by this
parameter {Fig. 6).

Tso and Sadek {15] and Bozorgnia and Tso [16]
carried out parametric studies to investigate the inelastic
behaviour and the sensitivity of response parameters to
system parameters of a simple single-storey one-way
eccentric structural model subjected to earthquake
ground excitation, using a step-by-step integration
approach. The model used in their studies consists of a
rigid rectangular floor deck of mass m supported by three
resisting elements in the direction of the ground motion
(Fig. 8). This model is statically indeterminate and the
changes of initial eccentricity and the uncoupled tor-
sional : translational frequency ratio were obtained by
adjusting the elasticstiffness of the resisting elements and
distances 4 of the elements from the centre of mass. The
force—displacement relationship of the elements was
assumed to be either bi-linear or bi-linear degrading. All
elements were assumed to have the same yielding
displacement. The peak element ductility demand and
the displacement at the flexible edge were chosen as the
response parameters. The system parameters were
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Fig. 4. Ratios of corner column deformation u,,,, to lateral displacement 4, at CM for systems subjected to Bl Centro carthguake.
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Fig. 8. Plan view of single-storey monosymmetric structural
model [16]. CS, centre of stiffness; CM, centre of mass.

taken to be the initial eccentricity ratio, the uncoupled
torsional : translational frequency ratio, the uncoupled
translational period, and the excitation level parameter,
which was the ratio of the elastic strength demand to the
strength capacity of the system, assuming the system was
symmetric. The results of extensive studies show that,
firstly, unlike the resulis of elastic studies, the coinci-
dence of uncoupled torsional and translational frequen-
cies does not lead to abnormally high peak inelastic
responses and that the element ductility demand is not
sensitive to the uncoupled frequency ratic, with no
systematic trends identified from the results (Fig. 9).
Secondly, significant rotational motion is involved at the
instant when the peak ductility demand is reached,
which implies that the eccentric system does not respond
primarily in translation when it is excited well into the
inelastic range, as concluded by Kan and Chopra [12]
{Fig. 10). Thirdly, these studies [15, 16] showed that
eccentricity has a large effect on both element ductility
demand (Fig. 11) and the flexible-edge displacement,
Finally, it was concluded that the effect of asymmetry on
the element ductility demand and on the flexible-edge
displacement is most pronounced for stiff systems with
low yield strength relative to the elastic strength demand
(Figs. 9, 11).

In a later study, Tso and Bozorgnia [17] studied the
maximum dynamic inelastic edge displacement and

element deformation of a single-storey monosymmetric
structural model subjected to unidirectional ground
excitation. The concept of effective eccentricity, which
was introduced for elastic one-way eccentric structures
to evaluate the effect of asymmetry on the lateral
displacement at the flexible edge of asymmetric build-
ings [18], was generalized for inelastic systems. The idea
was to match the maximum dynamic displacement at the
flexible edge of the asymmetric buildings to the edge
displacement of the same building subjected to an
equivalent static lateral load applied at a distance from
the centre of stiffness equal to the effective eccentricity.
In order to minimize the dependence of results on any
individual record, six earthquake records were consi-
dered and the inelastic effective eccentricity was calcu-
lated by averaging the effective eccentricities obtained
for these records. It was concluded that, except for short
period structures having low yield strength relative to
the elastic strength demand, the concept of effective
eccentricity can be extended to responses of inelastic
systems and the elastic effective eccentricity curves can
provide a reasonable or conservative estimate of inelas-
tic effective eccentricity. Hence these curves can be
used to estimate the edge displacement and element
deformation of inelastic systems.

Bruneau and Mahin [19] carried out parametric
studies on the inelastic earthquake response of asym-
metric single-storey systems with only two resisting
elements in the direction of earthquake excitation. The
post-vield characteristics of the resisting elements were
assumed to be bi-linear hysteretic. Their results showed
that the peak element ductility demand is not sensitive to
any of the parameters; namely, the uncoupled frequency
ratio, the eccentricity ratio and the uncoupled translatio-
nal period, which have been considered to have signifi-
cant influences on the response of such systems. Particu-
larly, they found that element ductility demand in-
creases with an increasing value of the uncoupled
frequency ratio. Furthermore, they claimed by
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comparing results from the two element model and
multi-element models that their two element model
gives conservative estimates for the peak element ductil-
ity demand.

It is clear that in this research area investigators have
employed different models and approaches to carry out
their studies and that as a result contradictory conclu-
sions have been obtained. The three main features of
these different approaches and the conclusions drawn
may be summarized as follows:

{1} Different structural models have been employed

Most researchers have used single-storey, mono-
symmetric structural models to carry out their studies.
The floor deck is considered rigid in its own plane with
mass m supported by massless planar resisting elements,
which are parallel to the direction of earthquake input
and with ecceniricity perpendicular to it. The structural
elements are assumed inextensible and their torsional
stiffness about their vertical axis is neglected.
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However, differences exist in the number of resisting
elements used in the models. Kan and Chopra [11, 12]
conducted their parametric studies based on a simplified
model having only one resisting element with a circular
base shear and torque yielding surface. Irvine and
Kountouris [13], and Bruneau and Mahin [19] used a
two element model; Tso and Sadek [15], and Tso and
Bozorgnia [16, 17] used a three-element model; whereas
Syamal and Pekaw’s model {14] has four elements, two
parallel and two perpendicular to the direction of
earthquake excitation.

Differences also exist in the definition and calculation
of the values of some of the parameters. Irvine and
Kountouris [13] considered eccentricity to be the result
of eccentric mass, whilst the remaining researchers
regarded eccentricity to be the result of unbalanced
stiffness of the structural elements. In the definition of
uncoupled torsional frequency, Kan and Chopra [12],
Bruneau and Mahin [19], Syamal and Pekau [14], and

Tso and Sadek [15] specified this parameter about the
vertical axis through the centre of mass, whereas Irvine
and Kountouris [13], and Tso and Bozorgnia {16, 17]
specified it about the vertical axis through the centre of
resistance. In order to get different values for the uncou-
pled torsional : translational frequency ratio, Bruneau
and Mahin [19] adjusted the value of the radius of
gyration of the floor slab; however, all other researchers
achieved this by changing the distances of the resisting
elements from the geometric centre of the floor slab,
Different response parameters were also used to
characterize the torsional effects. Kan and Chopra [12]
employed the ratio of the total vector deformation of the
corner column to the translational displacement of the
centre of mass (Fig. 2). Irvine and Kountouris {13],
Bruneau and Mahin [19], and Syamal and Pekau [14]
employed the peak ductility demand of the resisting
elements. Tso et al. [15-17] employed both the peak
ductility demand and the flexible-edge displacement.
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(2) Contradictory conclusions have been drawn about
the effect of uncoupled torsional to translational frequen-
cy ratio on the inelastic torsional response

In elastic studies of torsional coupling in asymmetric
buildings subjected to earthquake excitations, all results
show that structures with small eccentricity experience
pronounced torsional coupling when the uncoupled
torsional : translational frequency ratio (Q) is close to
unity. Nevertheless, in inelastic studies, different resear-
chers reached contradictory conclusions about the effect
of this parameter. Kan and Chopra [12] found that
inelastic torsional coupling is significantly sensitive to £2,
the effect being most pronounced for systems with @
close to unity. However, all other researchers found that
unlike the elastic studies, the coincidence of uncoupled
torsional to translational frequencies does not lead to
pronounced high inelastic peak responses of torsionally
coupled systems with low eccentricity subjected to
earthquake excitations.

Contradictory conclusions have also been reached
concerning the sensitivity and overall trends of element
peak ductility demand to €. Bruneau and Mahin [19]
found that the peak ductility demand is not very
sensitive to Q, but increases systematically with the
increase of Q. Results from the studies of Tso er al. {15,
16] show, however, that element ductility demand is not
sensitive to the frequency ratio and no systematic trend
of changes of element ductility ratio with changes in Q
can be seen from the resulis (Fig. 9). Syamal and Pekau
[14] found that for sinusoidal ground excitation,
although the ductility demand of the strong element is
1ot very sensitive to Q, the ductility demand of the weak
element is critically affected by €, particularly for
torsionally flexible systems having large eccentricity.
Their results show that in all cases the ductility demand
of the strong element falls slightly with the rise of §2. For
small eccentricities, the ductility demand of the weak
element remains constant with changes of £2. However,
for moderate-to-large eccentricities, it drops rapidly
with the increase of £ (Fig. 6). ‘

(3) Differing conclusions have been obtained about the
effect of eccentricity on inelastic torsional coupling

In elastic studies, all results agree that as the eccentricity
ratio {e/r) increases, the effects of torsional coupling on
the earthquake forces increase; namely, the base shear
and translational deformation decrease, whilst torque
and torsional deformation increase. The conclusions
from inelastic studies are more uncertain. Kan and
Chopra {12] concluded that the effects of torsional
coupling on system and column deformations depend on
eccentricity in a complicated manner with no apparent
systematic trends except for systems with € = 2. In this
case, the effects of torsional coupling increase with
increasing eccentricity ratio (Fig. 4). Irvine and Koun-
touris {13], and Bruneau and Mahin [19] concluded that
peak ductility demand is independent of the eccentricity

ratio. These studies showed that differences in element
ductility demand between eccentric and symmetric
structures and between structures with different eccen-
tricities remain small. On the other hand, Tso and Sadek
[15], Tso and Bozorgnia [16], and Syamal and Pekau [14]
found that ductility demand is very sensitive to eccen-
tricity, An increase of over 100% in ductility demand
was found to be not uncommon for systems with large
eccentricity when compared with the response of sys-
terns with small eccentricity. Furthermore, the results
showed that eccentricity has the effect of increasing the
flexible-edge displacement of the structure by a factor of
up to three [15], demonstrating that eccentricity is a
critical parameter controlling the inclastic response of
asymmetric siructures (o earthguake excitations,

3. DISCUSSION

3.1 Model dependency of inelastic earthquake
response of asymmetric structures

The summary given in Section 2 shows that the interpret-
ation of results from inelastic analysis of torsional
coupling effects in asymmetric structures is a compli-
cated issue. In the case of elastic analysis, studies using
different models and approaches, and employing time
history and response spectrum analysis, all reached
similar conclusions about the effects of the different
system parameters on the response of torsionally
coupled structures. The situation is different in the case
of inelastic analysis because, unlike elastic studies, the
inelastic response is model dependent. Considering the
single-storey, monosymmetric structural model shown
in Fig. 12, if the earthguake acceleration input is
unidirectional and parallel to the Y axis, then only two
degrees of freedom are concerned, namely the trans-
lational displacement of the centre of resistance (CR), v,
and the rotational movement of the floor slab about the
vertical axis through CR, 8. Thus, in the elastic range, if
damping is neglected, the equations of motion can be
writien as:

- " mey V + ;sz O g
mer mrz( i +t?7»2) B LO Tkt |
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7 Earthauake input

Fig. 12. Plan view of single storey monosymmetric structural
model.
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in which m is the mass of the floor deck, r is the radius of

gyration of the deck about the vertical axis through the

centre of mass (CM), e,* is the stiffness eccentricity ratio

e /r, and k; is the translational stiffness of element ¢

paraliel to the direction of the earthqguake input.
Equation (1) can be rewritten as follows:

L “ vop| ! 0 [v1_ [Vl
e 1+ 8]0 QP+ ir@ o e @
in which @ = w,/w, is the uncoupled torsional: trans-
jational frequency ratio. Therefore, it is apparent that
the elasticresponses v and 78 are uniquely determined by
the system’s parameters, e,*, Q, w,, damping and the
earthquake input. Systems having the same values of
e,*, Q, w, and damping, and subjected to the same
earthquake excitation will have the same elastic re-
sponses, v and r8.

For the analysis of inelastic response, the equations of
motion can be written in incremental form:
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wy () and Q(r) may be considered as the instantaneous
translational circular frequency and torsional:trans-
lational frequency ratio at time #; s(#) is the instanta-
neous position of the centre of resistance at time f;
s*(t) = s(t)lr.

From Equation (3), it is clear that the inelastic
response not only depends on the system’s parameters,
e,*, {2 and w, but also on the number, location, force—
deformation relationship and yield strength of the
individual resisting elements. Therefore, the inelastic
response is highly model dependent. The contradictory
conclusions summarized in Section 2 are the direct result
of the different analytical models used by the various
investigators.

Since the inelastic response is model dependent, and
given that the overall objective at the present stage of
research is to obtain a better understanding of the
inelastic behaviour of asymmetric structures under
severe earthquake excitations and to clarify the influ-
ence of the system parameters on inelastic torsional
effects, an independent assessment of the analytical

models employed by different researchers and the
results obtained has the highest priority for further
research work. The suitability of an analytical model
should be decided after consideration of the following
factors:

(1) reliability for ensuring conservative estimates of
the effect of inelastic torsional coupling on structural
response parameters;

(2) realistic representation of a range of actual build-
ing structures, and ease of interpretation of the results,
and

(3) simplicity of model definition and subsequent
analysis.

Kan and Chopra’s single-element model [11,12] is
simple and enables straightforward parametric studies
to be carried out. However, although it can predict the
global translational and torsional responses of the sys-
tem, it is too simple to provide a direct insight into the
ductility demand of the individual resisting elements.
This makes the application of the single-element model
very limited and unsuitable for the analysis of inelastic
torsional effects,

The two-element model employed by Irvine and
Kountouris [13] and Bruneau and Mahin [19] can predict
both the global response of the system and the ductility
demand of the structural elements, whilst at the same
time retaining simplicity. However, the two-element
model is statically determinate. In Section 4 of this
review, the statically determinate two-element model is
demonstrated to underestimate the peak ductility de-
mand of the weak element. Therefore, the two-element
model is not the most suitable for inelastic analysis of
torsional effects.

The three-element model employed by Tso ez al. [15~
17] seems to be the most suitable overall. This model is
statically indeterminate, the structural form encouraged
in aseismic design [20]; therefore it is a more realistic
model. The expected conservatism of this model should
be studied in further research work by comparing the
results with some of those obtained from models having
more than three elements.

3.2 Definition and influence of the uncoupled
torsional to translational frequency ratio

There are two alternative methods for varying the
uncoupled torsional:transiational frequency ratio £
whilst keeping the other system parameters constant.
The first is to change the radius of gyration of the floor
deck r, and the second is to adjust the distances of the
resisting elements from the geometric centre of the floor
plan. In their study, Bruneau and Mahin [19] adopted
the first approach. Changing the value of 7 is equivalent
to changing the aspect ratio of the building. This is rarsly
possible in practice because of constraining architectural
requirements. In order to vary £, a practical engineering
solution is to adjust the distribution of the stiffness
rather than the aspect ratio of the building. Furthermore
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reducing the value of r whilst fixing other parameters
(particularly the system’s torsional stiffness) in order to
increase Q decreases the rotational inertia mr® of the
floor slab and therefore reduces the system’s capacity
for torsional resistance. This gives rise to greater
rotational movement. Because Bruneau and Mahin
[19] fixed the distances of the resisting elements to the
geometric centre of the floor deck, a higher torsional
response leads to higher element deformation. Hence,
in their study the weak eclement ductility ratio always
increases with increasing value of Q. This differs from
the findings of Tso ef al. [15, 16], and Syamal and
Pekau [14] who adopted the second alternative, in
which a higher value of £ corresponds to a higher
torsional stiffness. This is achieved by increasing the
distances of the resisting elements to the geometric
centre of the floor plan. In this approach, increasing the
value of £ has two contradictory effects on element
ductility demand. On the one hand, higher torsional
stiffness makes the structure torsionally stiffer, there-
fore reducing the system’s torsional response. On the
other hand, the effect of rotational motion on element
deformation increases with increasing distance of the
element to the geometric centre of the floor plan.
Consequently, the effect of Q@ on element ductility
demand is complicated. The studies conducted by Tso
and Bozorgnia [16], and Syamal and Pekau [14]
disagreed on the effect of Q on the peak ductility
demand of the weak element. The former concluded
that €2 is a less critical parameter for the element
ductility demand, whilst the latter found that although
the strong element is not influenced significantly by this
parameter, the weak element ductility demand is
affected critically by @, particularly for torsionally
flexible systems with large eccentricity. The main
reason why the above studies reached different
conclusions about the effect of @ on element ductility
demand appears to be that the range of the parameters,
Q= 0.8 — 1.2, ¢," = 0.25, chosen by Tso and Bozorg-
nia [16] for their parametric study is not wide enough to
reveal the real trends. In particular, they omitted the
range of parameters representing the characteristics of
torsionally flexible structures having high eccentricities
(£2 < 0.8 and ¢,* > 0.25). Further research on this
topic is therefore needed before final conclusions are
drawn. The direct comparison of results obtained in
references [14] and [16] is made more difficult by the
different reference points chosen to define the rotation
movement, hence leading to different definitions of Q.
In deriving the equations of motion for single-storey,
monosymmetric structural models, there are two
different approaches to define the rotational movement
of the floor deck. The first is to define it about the
centre of mass (CM); the alternative is to define it
about the CR. These two approaches lead to different
definitions of the uncoupled torsional:transiational
frequency ratio, written as €, if the reference point is
CM and €, if the reference point is CR. In addition,

Rutenberg and Pekau [10] suggested a third definition as
follows:

- e (7)

in which K, is the system’s torsional stiffness about CR
and J,, is the mass moment of inertia of the floor slab
about CM.
The relationships between Q,,, £, and £, can be
derived using the following two equations:
Jﬁf = ]am + merz (8)

K, = K,, + K¢, ©
Thus
ngz — Wgm

= Q3 + e*? (10)
Similarly

Q2 =220 ,
(1 + 6,*2) (H,)

Therefore, QF < Q) <Q2and the relationship between
€2, and €2, is given by:

Q,, = [QX1 + %) + %" (12)
A
2 %2
Q,= 9—'?.?2”“ (13)
L +er

The relationship between €2, and Q, is plotted in Fig. 13
for selected values of ¢,*.

Tso and Bozorgnia’s [16] models with the parameters
e, = 0.25 and Q, = 0.8 — 1.2 have the corresponding
2, = 0.862 — 1.262. Results from Syamal and Pekau
{14] show that for models having these parametric
values, element ductility demand is not sensitive to Q,,,,
but for smaller values of £2,,, or larger values of ¢,*, the
weak element ductility demand drops rapidly with
increasing value of @, (Fig. 6).

A detailed discussion on the advantages and disadvan-
tages of chosing CM or CR as the reference point has
been given by Bruneau and Mahin [19]. Until now, the
choice of the reference centre to define the rotational
motion seems to have been a matter of researcher’s
preference. However, as indicated in reference [19],
Chapter 2.1.3, if CM is chosen as the reference centre



Asymmetric buildings under severe earthquake shaking

et

By
&)

1.5 178

3

Fig. 13. Relationship between Q,, and £2,.

and the uncoupled frequency ratio is defined as Q,,,
some combinations of eccentricity and uncoupled fre-
quency ratio (relating to low uncoupled frequency ratio
€2,, and large eccentricity ratio e,*) have no physical
meaning; that is, no real physical systems can be
represented since the system’s first eigenpair does not
exist, If CR is chosen as the reference centre and the
uncoupled frequency ratio is defined as £2,, all combina-
tions of system parameters are possible, having corres-
ponding physical systems. Thus, for parametric studies
of single-storey models CR may be a better choice than
CM, bearing in mind that in this case the centre of
resistance is easily defined. However, for multistorey
buildings, especially irregular structures, the locations
of the centres of resistance are load dependent and may
vary significantly from floor to floor {21].

3.3 Stiffness and strength ecentricities

The contradictory conclusions about the sensitivity of
element ductility demand to the system’s eccentricity
ratio may also be considered to be the result of the
different model definitions employed by the variocus
researchers. Studies on two element models [13, 19]
have shown that element ductility demand is indepen-
dent of eccentricity, whilst studies on three-clement
models {15, 16] show the opposite effect. Since most
buiiding structures have more than two resisting ele-
ments, the two-element model secems to be over-
simplified and underestimates the effect of eccentricity
on element ductility demand, hence giving non-
conservative results. The lack of dependence of element
ductility demand on eccentricity shown by dynamic
analysis of two-element models may be understood by
considering the behaviour of this model in static analysis
{see Section 4). Because the two-element model is
statically determinate, the element forces are indepen-
dent of the distribution of element stiffness which is
characterized by the model’s eccentricity, However, in

static analysis of the three-element model the element
forces are dependent on the distribution of element
stiffness, and the ductility demand of the weak element
is highly sensitive to eccentricity for systems having
small-to-moderate values of uncoupled frequency ratio.
On this point, the results of dynamic and static analysis
are in full agreement,

In elastic analysis, only one eccentricity parameter,
the stiffness eccentricity ratio e,%, needs to be consi-
dered. But in inelastic analysis, asymmetric element
yielding strength and varying non-linear force-
deformation relationships also give rise to torsional
coupling. Because yielding changes the stiffness of the
resisting elements and moves the centre of resistance
away from the yielding element, systems with initially
symmetric stiffness but eccentric vielding strength will
exhibit torsional coupling as soon as the first yielding
occurs. There are three sources which lead to an
asymmetric distribution of system’s strength, namely
different types of structural system {frames and shear
walls, for instance) employed to resist the lateral loads,
uncertainties in calculating the yielding strength of the
structural elements, and statistical variations of the
strength of the materials used. The strength eccentricity
is expected to have a major effect on the inelastic
response of asymmetric buildings to earthquake excita-
tion. Therefore, in inelastic studies, the system’s
strength eccentricity must be taken into account even for
systems having an imitially symmetric distribution of
stiffness.

Irvine and Kountouris [13] studied a two-element
model with symmetric stiffness and strength but with
eccentric distribution of mass. All other studies [12, 14~
17, 19} considered the strength eccentricity to be equal
to the stiffness eccentricity by assuming that all elements
have the same yielding displacement, asin Fig. 23. Thus,
in the models employed in these studies an element’s
yielding strength is proportional to its stiffness and the
centre of strength (CS) coincides with the CR. Until
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now, little attention has been paid to the effect of
strength eccentricity on inelastic torsional coupling.
Bruneau and Mahin {19] studied some very simple cases
of the inelastic response of initially symmetric two-
element models having unequal yielding levels 0.8F, and
Fy, ¥y and 1.2F,, F, and 1.5F,, F, and 2.0F,, without
taking the strength eccentricity as a separate parameter,
Sadek and Tso {22] introduced the strength eccentricity
concept and proposed to use it as a measure of the
degree of asymmetry. They carried out parametric
studies based on a single-storey, monosymmetric struc-
ture having four columns, the model being equivalent to
a two-clement model. The conclusion of this study that
stiffness eccentricity is not influential in determining the
element peak ductility demand is contradictory to that of
their previous studies using three-clement models.
Further parametric studies need to be carried out to
investigate the influence of strength eccentricity on
inelastic torsional coupling based on three-element
models, and in order to demonstrate its effect the
strength eccentricity ratio should be defined as an
independent system parameter.

4. STATIC PARAMETRIC ANALYSIS OF
TORSIONAL COUPLING EFFECTS IN
ASYMMETRIC STRUCTURES

4.1 Introduction

Previous studies have concentrated mainly on analysis of
dynamic time history responses. Few researchers have
compared the results from different structural models.
Tso and Sadek [15] compared the ductility demand of
the element furthest away from the centre of resistance
employing their three-element model with the corres-
ponding results from Irvine and Kountouris’s two-
element mode! [13]. They found that, in general,
Irvine’s two-element model results in lower ductility
demand than the three-element model (Fig. 14). Thus,
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Fig. 14. Comparison between ductility demands u in 3-
element, 2-element and symmetric models subjected to El Cen-
tro earthquake [151. 8, centre of stiffness; M, centre of mass.

Tso and Sadek’s conclusion is that the two-element
model tends to underestimate element ductility de-
mand. However, the results of Bruneau and Mahin’s
study [19] showed the opposite trend. In order to
demonstrate their two-element model to be appropriate
and conservative, they compared the ductility ratio of
the weak-edge element obtained from models having
two, four, six and eight elements, respectively. They
found that the ductility ratios of the weak-edge element
obtained from a two-element model are conservative
and that the differences are not significant when com-
pared with results obtained from multi-element models.
Furthermore, for all models this ductility ratio was
found fo be greater with an increasing value of the
uncoupled frequency ratio. The latter trend has been
explained in Section 3.2. The former conclusion is
invalidated by the fact that the various models employed
in Bruneau and Mahin’s study [19] have different values
of the key parameters; that is, besides the different num-
bers of resisting elements, the models have unequal
values of the total yielding base shear, with models with
more resisting elements having higher yvielding base shear
than the two-element model. The models also have dif-
ferent strength eccentricities. Bruneau and Mahin scaled
the intensity of the earthquake records in order to match
the maximum elastic displacement of an equivalent
SIDOF system to that of the two or multi-element eccen-
tric system’s weak-edge element. Thus, the two-element
system and the multi-element systems not only have
different yield base shear and intensities of earthguake
input, which may cause the system parameter reflecting
the ratio of the intensity of the earthquake input to the
structure’s yield base shear to vary, but they also have
different strength eccentricities. For the purpose of
comparing results from models having different num-
bers of elements, it is essential for the models to have the
same values for all the system parameters, leaving the
number of resisting elements to be the only difference.
This is not the case in Bruneau and Mahin’s study [19].

In order to gain a better understanding of the model
dependency of inelastic torsional effects in asymmetric
structures and to choose an analytical model which
ensures conservative estimates of torsional effects and
retains simplicity, it is helpful to carry out a static
analysis to clarify the influences of the varicus system
parameters on the response of different models. Section
4.4 gives some results from inelastic static parametric
analysis employing models with two and three elements.
Dynamic analysis of inelastic torsional response of such
models will be the subject of further research.

4.2 Characteristics of the meodels employed

The models employed in the static analysis are single-
storey, monosymmetric, having two or three resisting
elements parallel to the direction of the applied loading
as shown in Fig. 15. The floor slab 1s assumed to be rigid
in its own plane and the mass is uniformly distributed on
the floor. The resisting elements are considered massless
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Fig. 15, Plan view of single-storey monosymmetric structural
models employed in static parametric analysis: {a) 2-element
model; (b} 3-element model. CM, centre of mass; CR, centre
of resistance; CS, centre of strength.

and inextensible. Their torsional stiffness about their
own vertical axis and translational stiffness perpendicu-
lar to their own acting plane are neglected. To simplify
the analysis, the force—deformation (end shear and end
lateral displacement) relationship of the elements is
assumed to be elastic-perfectly plastic.

There are three reference centres associated with each
model, namely the CM, CR and CS characterizing the
distribution of mass, stiffness and strength of the model
respectively. CM coincides with the geometric centre of
the floor plan in all cases. The traditional definition of
CR 1s employed, giving:
2kix
Zk;

yr=0 (17)
and the stiffness eccentricity e, 1s defined as the offset of
CR from CM. The stiffness eccentricity ratio e,™ = e,/r,
where r is the radius of gyration of the floor deck about
CM, which is 1o be assumed constant.

The CS is defined as the point through which the
resultant of all the element forces acts when all elements
are loaded to their vield strengths. The coordinates of
CS can be found by taking the first moment of the yield
strengths about the origin of coordinates as follows:

_ ZFx;
©2F,

i=0  (14)

X, =

Xs

(16)

and the strength eccentricity e, is defined as the offset of
CS from CM. The strength eccentricity ratio e, = e,/r.

The system’s total yield base shear F, = 2F,;, where
F; is the yield strength of the ith element. The system’s
total translational stiffness K, = Zk;, where k; is the
translational stiffness of the ith element in the y direc-
tion. The system’s torsional stiffness about CR, X, =
Skix?. Eccentricities are caused by the unbalanced
stiffnesses and strengths of the two edge elements.
Changes in stiffness eccentricity and torsional stiffness
K, are achieved by adjusting the difference in stiffness
and the distances to CM (d) of the two edge elements.
For example, a higher value of K, combined with a
constant value of ¢,* can be achieved by increasing the
distance d and reducing the difference in translational
stiffness of the two edge elements. In this paper, changes
in §2, are obtained by adjusting the value of torsional
stiffness as opposed to changing 7.

4.3 Determination of element properties from
system paramefers

4.3.1 Two element model
For the two element model, k;, F,; and d are uniquely

determined by the values of the system parameters, as
follows:

Fy :—%Fy 1 +~€~§C (18)
Fa=tp|1- 4T (19)
ki ::%Ky i+£§£ (20)
kzz%Ky 1-% 21

2 #3214 (22)

d=r (21 + e +ef?)

4.3.2 Three element model

Unlike the two element model, &;, F), and d of the three-
element model cannot be determined uniquely by the
systemn parameters. For a given set of system para-
meters, many combinations of k;, Fy; and d are possible.
In this paper, the stiffness and yielding strength of
element 2 are taken to be the average values of all three
elements. Thus:

Fy=F, ﬁf = %‘f} (23)
Fyp= i‘ £y (24)
werfi3%) e

iy = -}“Ky (27
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1 1er
B8 {5”5“?}
N7

d= r{%(gz% (1+ef%) +ef 2)}

(28)

(29)

4.4 Results of static analysis

A static concentrated load F is applied to each model
through CM and paraliel to the y axis. Closed form
solutions for the ultimate value of load F (denoted as
Fonax) which the model can withstand and the maximum
ductility demand of the resisting elements have been
derived as given below.

4.4.1 Results from two-element models

The two-element model is a statically determinate
system. Because of this, the distribution of the load F
between the two elements is independent of the distribu-
tion of stiffness. Moreover, as scon as the weak element
yields, the system becomes a mechanism assuming the
post-yielding force~deformation relationship of the ele-
ments is elastic-perfectly plastic. There is therefore no
development of plasticity in the material of the ele-

1.2 +

0.8 3
Pmax/Fy 06 +
0.4

02+

ments. The maximum ductility ratio of the elements is
1.0, irrespective of e,* and e,*. After first yielding, the
problem becomes dynamic and is therefore beyond the
scope of static analysis.

The maximum value of lateral load F is:

esr
d

/-
- e
L @+ + e

To demonstrate the effect of ¢,* and Q, on F,.,
equation {30) has been plotted in Figs 16 and 17. In
Fig. 16, it is assumed that the element yield strengths
are proportional to their stiffness (see Fig. 23),
therefore ¢, = ¢,*. In Fig. 17, ¢,* is taken to be zero,
representing initially symmetric systems (see Fig. 18).
From Figs 16 and 17, it is clear that in static analysis
both strength eccentricity and uncoupled frequency
ratio significantly affect the ultimate load the structure
can withstand. The effect of strength eccentricity is
particularly pronounced for torsionally flexible struc-
tures {(Q, = 0.5 — 0.8) with small-to-moderate
strength eccentricities {(e,* = 0.0 — 0.4); in these
cases, I, drops rapidly with increasing e¢,*. In all
cases, F,,,, increases with increasing value of ,. The

Fmaxzﬁy [1 -

=Fy (30)

,=2.0
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Fig. 16. Effect of strength eccentricity ratio on F,,, for Z-clement models with equal strength and stiffness eccentricity.
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Fig. 17. Effect of strength eccentricity ratio on F,,, for 2-clement models with evenly distributed element stiffness.
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effect of £2, on F,,,,, is more critical for structures having
moderate~to-large strength eccentricities (e,” = 0.4).

4.4.2 Results from three-element models

The three-element model is statically indeterminate.
Following first vielding, the system becomes statically
determinate and can still sustain an increasing load F.
When a second element vields, the system becomes a
mechanism and the static load reaches its ultimate value
Fonax- At this stage, there has been some development of
material plasticity in the element which vields first, and
hence its ductility demand is larger than 1.0. Therefore,
in static analysis of the effect of torsional coupling on the
ductifity demand of resisting elements, the two-¢lement
model underestimates the ductility demand compared
with the three-element model, since in the former case
no development of plasticity is possible.

4.4.2.1 Initially symmetric systems

Initially symmetric systems are chosen to demonstrate
the effect of strength eccentricity and remove the effect
of stiffness eccentricity. For initially symmetric systems,
all three elements have the same elastic stiffness but
unbalanced yielding strength as shown in Fig, 18.
Therefore, CR coincides with CM but CS does not; that
is, e," = 0, ¢,* + 0. Before vielding, the system does
not exhibit torsional motion, all the three elements
having the same translational displacement. After vield-
ing of the weakest element (element 3), the resisting
force in element 1 remains constant in order to maintain
equilibrium (ZM,,,, = 0). The resisting force in element
2 increases with the increase of the load until it yields.
When element 2 yields, the system becomes a mechan-
ism, The ultimate value of the load:

Fmax = 2}7},? -+ F}’z :F/\) (1 *"’fa::i}

F
=Fy|l- 2 ) wi
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Fig. 18. Element force-displacement relationships for 3-
element models with evenly distributed element stiffness.

Equation {31) has been plotted in Fig. 19. The maximum
ductility demand of element 3 (the weakest element) is:
6%e;

Vo (32)

N
Egquation (32) has been plotted in Fig. 20. Comments on
the results shown in Figs 19 and 20 are given in Section
4.4.3,

4.4.2.2 Systems with balanced yielding strength
Systems with balanced yielding strength are studied to
demonstrate the effect of stiffness eccentricity indepen-
dent of the effect of strength eccentricity. In this case,
the distribution of sirength is symmetric, TS coincides
with CM but CR does not, thatis, ¢,* = 0, ¢,* % 0, All
three elements have the same yielding srength bui
different stiffnesses as shown in Fig. 21. The ultimate
load the structure can withstand is F,,,, = F),

From the equilibrium requirement TM,,, = 0, we
have Fy = F,. Because the floor slab is rigid in its own
plane, Az = Y2 (A + A}, and hence in the elastic range
the resisting force in element 2 is:

fo=kiky =—

(33)

Let ky = oK, 0 < o < 1. From the assumption k; +

ks = %K, we obtain:

Fy = Fy—ps (34)

Now, 9a (% — o) < 1.0if a % %. Furthermore, if o =
¥ then 9a (3% —~ o) = 1.0 and in this case ¢,* = {.
Therefore, in all cases F, = F, = F,, and element 2
yields first. After the vielding of element 2, the resisting
forces in element 1 and 3 remain equal and increase with
the increasing load until these two elements yield
simultaneously.

The ductility demands of elements J and 3 pq = ps =
1.0 when Freaches F,,,., whilst the ductility demand of
element 7 is:

36:2
ZQ%U + efzj — e’

Ho=10+ (35)

Equation (35) has been plotted in Fig. 22 and the results
are discussed in Section 4.4.3,

4.4.2.3 Systems with equal stiffness and strength eccen-
tricities

In this case, the yielding displacements of the resisting
clements are equal and the yield strengths of the
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Fig. 19. Effect of strength eccentricity ratio on F,,,, for 3-element models with evenly distributed element stiffness.

Q,=0.5 0.8 1.2 :
10 1 1.5

Ductility
Demand

0 + } i + } 1 + : + i
0 01 02 03 04 05 06 07 08 09 1 11 12

Strength Eccentricity Ratio e,

Fig. 20. Effect of strength eccentricity ratio on the ductility demand of element 3 for 3-element models with evenly distributed
clement stiffness.
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Fig. 21. Element force—displacement relationships for 3-element models with evenly distributed element strength.

elements are proportional to their stiffnesses as shown in Frax=Fy|1~- %
Fig. 23. J
Because the elements have the same yielding displace- 4 o \
ment, the one furthest away from CR, element 3, yields =Fyil- A sl
first. Then, the resisting force in element / remains 3 5w ) I (36)
constant because of the equilibrium requirement b(ﬁr(% +er) +er )j ) ;

=M, = 0. Therefore, element ! becomes stationary
and the floor slab rotates about element 7 untilelement 2 Equation (36) has been plotted in Fig. 24. The maximum
yields. The ultimate value of the applied static load is: ductility demand occurs in element 3,
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Fig. 23. Element force-displacement relationships for 3-element models with equal strength and stiffness eccentricity.
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Fig. 24. Effect of strength and stiffness eccentricity ratio on F,,,, for 3-element
models with equal strength and stiffness eccentricity.
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Equation (37) has been plotted in Fig. 25.

4.4.3 Discussions on the results from three element
models

Figures 19 and 24 show that the system’s strength and
stiffness eccentricities, and the uncoupled frequency

ratio, are critical parameters affecting the ultimate value
of the static load the structure can withstand. Increasing
the system’s torsional stiffness —1.e. increasing the value
of Q, — always has the effect of increasing the system’s
capacity to withstand the static load. The effect of
uncoupled frequency ratio on F,,,, is more pronounced
for structures with moderate to large eccentricities.
Fua always declines with increasing values of eccentric-
ity. For torsionally flexible systems (2, = 0.5 ~ 0.8), a
moderate value of eccentricity ratio (0.4) reduces the
system’s lateral load resisting capacity to about 56-60%
of its total yield base shear (Figs 19 and 24). For systems
with equal strength and stiffness eccentricities, ¥, is
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Fig. 25. Effect of strength and stiffness eccentricity ratio on the ductility demand of element 3 for 3-clement models with equal

strength and stiffness eccentricity.

more sensitive to eccentricity when the uncoupled
frequency ratio is low and the eccentricity is small.
Comparing Figs 19 and 24 with Figs 16 and 17, it is clear
that results obtained from both two-element and three-
element models are similar, but the results from three-
element models indicate a larger F,,,, compared with
two-element models, indicating the effect of develop-
ment of material plasticity on the structure’s capacity to
resist lateral loading. Therefore, in static analysis of the
effect of inelastic torsional coupling, the two-element
model underestimates both the peak ductility demand
and the structure’s capacity to resist lateral load.
Figure 20 shows the effect of strength eccentricity and
uncoupled frequency ratio on the maximum ductility
demand of initially symmetric systems. It can be seen
that both these system parameters significantly affect
the element ductility demand. The maximum ductility
demand increases rapidly with increases in strength
eccentricity ratio but reduces with increasing uncoupled
torsional:translational frequency ratio. The effect of Q,
is more pronounced for systems with moderate-to-large
strength eccentricities than for systems with small
strength eccentricities. Increasing the value of Q, also
has the effect of reducing the influence of strength
eccentricity on the maximum ductility demand; the
element ductility demand becomes less sensitive to the
strength eccentricity for systems with large values of
torsional stiffness (82, = 1.8) than for systems with
small-to-moderate values of Q, (@, = 0.5 — 1.5).
Figure 22 shows the effect of stiffness eccentricity and
uncoupled frequency ratio on the maximum ductility
demand of systems with symmetric distribution of yield-
ing strength {e,* = 0). In this case, the effect of Q, is
similar to that in the case of initially symmetric systems.
The stiffness eccentricity ratio only significantly affects
ductility demand of systems with small-to-moderate
values of uncoupled torsional:translational frequency
ratio (R, = 0.5 — 1.0). The element ductility demand is
not sensitive to the stiffness eccentricity ratio when the
system’s uncoupled frequency ratio is larger than 1.2

Figure 25 shows the influence of eccentricity and
uncoupled frequency ratio on the maximum ductility
demand for systems having equal strength and stiffness
eccentricity ratios. In this case, element ductility de-
mand is sensitive to both of these parameters. The effect
of eccentricity is more pronounced in the range of small-
to-moderate eccentricities. In the range of large eccen-
tricities (e,* = ¢,* = 1.0}, element ductility demand is
not sensitive to eccentricity ratio. Larger values of Q,
always correspond to smaller ductility demand, the
effect being more significant for systems with moderate-
to-large eccentricity.

5. CONCLUSIONS AND PROPOSALS FOR
FURTHER RESEARCH

Torsional coupling of asymmetric building structures to
earthquake excitation has been an area of considerable
research activity in the past 10 years. However, most
existing studies have concentrated on elastic torsional
coupling. Research on inelastic torsional coupling is still
at an early stage and the results of the few existing
studies have led to sharply conflicting conclusions
regarding the significance of certain key structural
parameters in the inelastic earthquake response. This
paper has brought together the results from previous
research and carried out a critical assessment in which
the model dependency of the dynamic response is
highlighted. The ultimate lateral load-carrying capac-
ity and peak element ductility demand in two- and three-
element building models have been studied parametri-
cally under static loading conditions. The results have
been used both to clarify the differences in the conclu-
sions drawn from previous dynamic response studies and
to provide a basis for further research into dynamic
torsional response in the inelastic range, with an emph-
asis on clearer model definition in order to highlight
parametric response trends.

It is necessary to carry out further research in the
following areas in order to gain a better understanding of
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the inelastic behaviour of asymmetric building struc-
tures under severe earthquake loading and the influence
of the various system parameters, and to use the resulis
to provide guidelines for design procedures:

1. Establishment of suitable single and multistorey
analytical models which retain simplicity to facilitate the
analysis; realism to represent a range of actual building
structures; and reliability to ensure conservative esti-
mates of the inelastic torsional coupling effects.

2. Studies of the influence of system parameters on
response parameters. The effects of the distribution of
mass, stiffness and strength along the horizontal and
vertical axes on the inelastic torsional effects are of
particular importance.

3. Assessmentofcurrenttorsional provisions of major
building codes in order to incorporate guidelines for
design of torsionally asymmetric structures and to ensure
realistically conservative estimates of design forces.

4. Studies of the effect of inelastic torsional coupling
on the energy absorbing capacities, the collapse and
failure processes and the overall stability of asymmetric
buildings subjected to severe earthquakes. Hence, to
provide guidelines for design procedures to minimize
and control the dynamic torsional response, to increase
earthquake resistance capacity and to prevent collapse.

A programme of research with the above objectives is
currently being undertaken, and includes detailed eva-
luations of the provisions relevant to torsionally coupled
buildings in the Mexican and European earthquake
building codes [23-25], together with experimental
verification of analytical procedures using small scale
model tests carried out on the Science and Engineering
Research Council’s 6-axis UK national earthquake
simulator facility.
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